25. The dry electrode process of Maxwell Technologies (soon to be Tesla owned)

Dry electrode process from Maxwell Technologies

Patent 20170098826A1

Capacitor cycle life and operating voltage are governed by the lack of impurities left over from the electrode casting process. Maxwell Technologies claims a solvent – less, dry process can double the cycle life of their capacitors. In this podcast I also discuss the viability of this dry process for manufacturing battery electrodes.


24. The “R&D” development cycle : the good, the bad and the ugly

Key elements of a successful battery R&D program

I receive a lot of interest regarding setting up R&D programs for lithium ion batteries. In this podcast I dissect the defining elements of a successful battery R&D program. If your company is interested in this type of venture or if you are a student entering this field at an early stage, you may find this episode more interesting than my typical podcast. Enjoy!

23. Cobalt free cathodes: Jeff Dahn (now with Tesla) suggests they are possible and stable

Cobalt free cathodes

Jeff Dahn paper

The first high voltage cathodes were proposed by John Goodenough in the form of LCO (lithium cobalt oxide) and they were quickly adopted as commercial materials. In an effort to lower costs (cobalt is expensive), analogous LNO (lithium nickel oxide) cathodes have recently been commercialized as doped NCM (nickel, cobalt, manganese) and NCA (nickel, cobalt, aluminum) cathodes. Modern NCM/NCA contain only 5% cobalt and cobalt free derivatives may soon become a reality. Learn how and why in this podcast.

22. Ni rich NCM (cathodes): how we got it, why we use it and how to keep it stable

Recent twist in the capacity fade mechanism of Ni rich NMC

NCM622 capacity fade paper from Brookhaven National Lab

Currently accepted cathode dogma preaches the root cause of capacity fade in Ni rich NMC is the irreversible phase change of the active material crystalline structure. However, recent findings challenge the status quo. Listen to my podcast to learn more.

20. Stable lithium plating with 3x capacity of commercial Li-ion cells… apparently possible @Stanford

Stable cycling of lithium metal anodes

Paper link

Yi Cui’s web page

Past podcast on lithium ion separators

The Holy Grail of anodes is a lithium metal anode. Taming this temperamental beast has been unsuccessful so far, but it is bound to change. In this podcast I discuss a composite separator membrane which enables plating lithium with 3x the speed and 3x the quantity (capacity) of commercial lithium ion cells.

19. Can we bypass the energy – fast charge compromise?

How to break a compromise

Fast charge is limited by the reduction (lithiation) potential and nature of the anode. If charged too fast, graphite anodes may be plated with lithium metal because their lithiation potential is too close to the plating potential of lithium. Faster charge can be accomplished with anodes which lithiate at higher potentials (such as NTO). The trade-off is lower cell energy since there will be a smaller voltage difference between anode and cathode. However, there are anode materials which may bypass this energy – fast charge compromise. Listen to my podcast to learn more.

17. How fast can commercial cells really charge?

Energy cells vs. power cells – charging rate

Belharouk et al, 2018, Electrochemical Communications – charging limits of NCM811 cathodes and graphite anodes

Bhagat et al, 2018, Electrochimica Acta – charging limits of commercial energy cell

Miller et al, 2017, SAE – charging limits of commercial power cell

In this podcast I discuss the charging rate limits for commercial electrode materials as well as commercial cells. They are faster than you may think.

16. 2 minute charge? Impossible!


Patent application

Bruce Dunn

This material can charge in 2.5 minutes, > 10,000x.

Currently commercial lithium ion batteries typically charge in 1.5 – 2 hours. ‘Fast charge’ is limited to 30 – 45 minutes and with harsh consequences on cycle life and safety. However, there are battery electrode materials which blur the capacitor/battery line. MoS2 has been claimed by professor Dunn (UCLA) to be such a “pseudocapacitor”. This podcast discusses a patent claiming a pseudocapacitor electrode material which can charge in 2.5 minutes for > 10,000x and with a capacity > 120mAh/g.

> 10,000 cycles with no capacity fade at a charge/discharge rate of 23C (which corresponds to 2.5 minute charge). Capacity is stable > 120 mAh/g.